Single-pass backpack electrofisher use for estimation of juvenile coho salmon abundance

Mat-Su Salmon Science & Conservation Symposium November 14, 2013

Kevin M. Foley U.S. Fish and Wildlife Service, Anchorage Field Office

Dr. Amanda E. Rosenberger USGS Missouri Cooperative Fish and Wildlife Research Unit

Dr. Franz J. Mueter University of Alaska, Fairbanks, School of Fisheries and Ocean Sciences

Reliable methods

Where?

How many?

Reliable sampling methods needed to assess abundances of stream fishes

Standard sampling practices

Backpack electrofishers

Validation of methods is essential

Sampling efficiency affected by habitat

Standard sampling is NOT validation!

How do we validate?

Measure Sampling Efficiency (SE) =

Use a "reliable" method as abundance baseline (e.g., known number of 'marked' fish)

Percent efficiency =

<u>Total marked fish captured in a single-pass</u> Total number marked fish released into a site

Abundance: Model percent of the "True" population captured

Our method

Establish a closed population

Search for marked fish

Capture and mark fish

Measure habitat features

What to do

Develop models to estimate sampling efficiency

Number marked recaptured Number marked = f(environmental features)

Model using linear regression

Estimate juvenile coho salmon abundance

Estimate juvenile coho salmon abundance

Measure features that may affect sampling efficiency (SE)

Estimate juvenile coho salmon abundances

Measure features that may affect sampling efficiency (SE)

Develop models to estimate single-pass SE

Estimate juvenile coho salmon abundances

Measure features that may affect SE

Develop models to estimate single pass SE

Create models that approximate mark-recapture population estimates

Mark-recapture techniques

Results

Estimates based on *n*= 27 MR stream segments

Removed from model: Dominant substrate Wood pieces size class F ("wood aggregates")

Global model was not significant at 0.05 alpha level (R² = -0.0018, *p*-value: 0.447)

Calibration of single-pass catches

Single best model of abundance estimates

Single-pass numbers reflect prediction estimates

Site

Narrow range of conditions

Conclusions

Failure to validate may lead to inaccurate population estimates

Conclusions

Failure to validate may lead to inaccurate population estimates

Low-effort sampling can approximate actual fish numbers

Conclusions

Failure to validate may lead to inaccurate population estimates

Low-effort sampling can approximate actual fish numbers

Transferable model to other areas with similar habitat conditions

Acknowledgements

Funding for this work provided by the Mat-Su Basin Salmon Habitat Partnership under the National Fish Habitat Plan

Special thanks to Phillip Taylor, Casey Smith, Parke Loyd, Danielle McClain, Sydney Clark, Sarah Laske, Jonathon Gerken, and Doug McBride for assistance with field data collection.

