Single-pass backpack electrofisher use for estimation of juvenile coho salmon abundance

Mat-Su Salmon Science \& Conservation Symposium November 14, 2013

Kevin M. Foley

U.S. Fish and Wildlife Service, Anchorage Field Office

Dr. Amanda E. Rosenberger

USGS Missouri Cooperative Fish and Wildlife Research Unit

Dr. Franz J. Mueter

University of Alaska, Fairbanks, School of Fisheries and Ocean Sciences

Reliable methods

Where?

How many?

Reliable sampling methods needed to assess abundances of stream
fishes

Standard sampling practices

Backpack electrofishers

Validation of methods is essential

Sampling efficiency affected by habitat

Standard sampling is NOT validation!

How do we validate?

Measure Sampling Efficiency (SE) =

Use a "reliable" method as abundance baseline (e.g., known number of 'marked' fish)

Percent efficiency $=$
Total marked fish captured in a single-pass
Total number marked fish released into a site

Abundance: Model percent of the "True" population captured

Our method

Capture and mark fish

Search for marked fish

Measure

habitat features

What to do

Develop models to estimate sampling efficiency

Number marked recaptured Number marked
$=f$ (environmental features)

Model using linear regression

Objectives

Estimate juvenile coho salmon abundance

Objectives

Estimate ivvenile coho salmon abundance
Measure features that may affect sampling efficiency (SE)

Objectives

Estimate jivenile coho salmon abundances

Develop models to estimate single-pass SE

Objectives

Estimate juvenile coho salmon abundances
Develop nodels to estimate shole pass st
Create models that approximate mark-recapture population estimates

Sampling design

Mark-recapture techniques

Environmental variables measured:

Sampling design

Mark-recapture techniques

Environmental variables measured:

Sampling design

Mark-recapture techniques

Environmental variables measured:

Sampling design

Mark-recapture techniques

Environmental variables measured:

Sampling design

Mark-recapture techniques

Environmental variables measured:

Sampling design

Mark-recapture techniques

Environmental variables measured:

Results

Estimates based on $n=27 \mathrm{MR}$ stream segments

Removed from model:
Dominant substrate
Wood pieces size class F ("wood aggregates")

Global model was not significant at 0.05 alpha level ($R^{2}=-0.0018, p$-value: 0.447)

Calibration of single-pass catches

Single best model of abundance estimates

Single-pass numbers reflect prediction estimates

Narrow range of conditions

Conclusions

Failure to validate may lead to inaccurate population estimates

Conclusions

Low-effort sampling can approximate actual fish numbers

Conclusions

Transferable model to other areas with similar habitat conditions

Acknowledgements

Funding for this work provided by the Mat-Su Basin Salmon Habitat Partnership under the National Fish Habitat Plan

Special thanks to Phillip Taylor, Casey Smith, Parke Loyd, Danielle McClain, Sydney Clark, Sarah Laske, Jonathon Gerken, and Doug McBride for assistance with field data collection.

